202(5.73) 1ss.1

SECTION 3 - Program Instructions

List of Contents

Introduction
Memory Reference Instructions
Indirect/Direct Addressing
Register and Control Instructions
Micro-instructions
Mode @
Mask Bit MNumbers
Mode 1
Mode 2
Mode 3
Literal (I/0, Shifts, etc.) Instructions
Multiple Short Shifts and Rotates
Input/Output Instructions
Operation Code
Accumulator Indicator
Function
Modes
Device Codes

Status Codes

3:32
3:32
3:34
3:35
3:36
3:36
3:36
3:37
3:40

3:1

PROGRAM INSTRUCTIONS

Introduction

There are three types of basic instructions which are grouped according
to the bit format of the instruction word. These types are :-

a)’ Memory Reference Instructions which deal mainly with the transfer
of information to/from Accumulators A and B to/from the core stores.

b) Register and Control Instructions which deal mainly with shifts,
clears, rotates, negative tests, zero tests, etc. on the Accumulators.

c) Literal Instructions (I/0, Shifts, etc.) All Input/Output instructions
are privileged, while the literal functions deal with multiple shifts
and rotates.

The following pages describe in detail each of the instructions in
the three groups. Functions of bits appearing in the form A/B, Z/C, I/D,
L/R, T/F, S/R, L/S or A/L throughout these specifications are invariably
obtained by coding a 1 or ¢ respectively (1/@). Thus, for example, A is
specified by a one-bit, and B by a zero-bit. The following defines the
abbreviations used :-

A/B Accumulator A/ Accumulator B
zZ/C Zero Page/Current Page

/D Indirect/Direct

L/R Left/Right

T/F True/False

S/R Shift/Rotate

L/S Long/Short

A/L Arithmetic/Logical

202(5.73) 1Iss.1

3

——— -

2

a) MEMORY REFERENCE INSTRUCTIONS

The 22 Memory Reference instructions carry out some operation involving
core locations, such as transferring information in or out of a core memory
location or checking the memory location contents. Memory Reference
instructions have the following general format in Machine Language, as shown
in Fig.3:1 below :-

17 16 15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1

OPERATION coos(o_zqq Vol MEMORY ADDRESS

Fig. 3:1

The instruction word uses five bits (Bits 13-17) to encode the 22
instruction commands in this group. The address referenced is determined
by a combination of ten memory address bits (Bits 1 to 10), plus two bits
(Bits 11 and 12) to identify one of four addressing modes :-

Direct in Page Zero

Direct in Current Page
Indirect through Page Zero
Indirect through Current Page

Because there are only ten bits available to specify the memory
address, a Memory reference instruction can directly reference only Octal
4000 words, 2000 on the Zero Page (the base page, consisting of locations ‘o
000000 through 001777) and 2000 on the Current Page (the page in which the .
instruction itself is situated). Bit 1l in a Memory Reference instruction
specifies one or the other of these two pages as follows :-—

1
]

a page being defined as the largest block of memory which can be addressed by
the ten memory address bits of a Memory instruction. The Molecular 18 core
memory is logically divided into pages of 1024 words (decimal) each. Octal
addresses of the pages are as follows :-

Page § - 000000 to 001777
Page 1 - 002000 to 003777
Page 2 - 004000 to 005777
Page 3 - 006000 to 007777
Page 4 - 010000 to 011777
and so on through to :-
Page 77 - 176000 to 177777

Zero Page
Current Page

202(5.73) 188.1

3:3

It will be noted that each page starts on an even thousand (Octal).
Appendix 15 lists the octal addresses of all pages from @ to 77 in full.

To address locations in any page other than Zero or Current,
indirect addressing is used via the Zero or Current Page, as explained
beneath :-

Indirect/Direct Addressing

Memory Reference instructions include a bit (Bit 12) reserved to
specify direct or indirect addressing. Direct addressing combines the
operation code and the effective address into one word, permitting a
Memory Reference instruction to be executed in two machine cycles (Fetch and
Execute), except for Jump, which takes only one machine cycle. Indirect
addressing uses the address part of the instruction to access another word
in memory which is taken as a new memory reference for the same instruction.
This new address is a full 17 bits long, 16 bits of address plus another
bit (Bit 17) which is used as a further Indirect/Direct bit. The 16-bit
length of the address permits access to any location in up to 64K of core.
If Bit 17 again specified indirect addressing still another address is
obtained; this multiple-step indirect addressing could be carried out to
any number of levels (up to 15), but this of course would not be practical.
The first address obtained in the Indirect phase which does not specify
another indirect level becomes the effective address for the Memory instrugtion.
Memory instructions with indirect addresses are therefore executed in a
minimum of three machine cycles (Fetch, Indirect and Execute).

Indirect or Direct addressing is specified by Bit 12 (or Bit 17)
as follows :-

Indirect
Direct

D
[

Note that since Accumulators A and B can be addressed, a Memory
Reference instruction can apply to either of these registers, both directly

or indirectly (except in the case of a direct JUMP or JSBR), as well as to
core stores.

Fig. 3:2 gives instruction codes and mnemonics for all Memory
Reference instructions :-

202(5.73) 1S8.1

3:4

7615 a3[12[11[1I0][9[8[7]6[514[3]2]"
(EEEEEBE REERERE RE N EE BE N EE N 3 NN NN
Mnemonic * Octal INSTRUCTION '/D i/c MEMORY ADDRESS
JUMPa 02 0coo01 O |
JSBR A 03 00O 1 |
INSZ & 04 OO0 1 00O
DESZ a o5 00 I O I
ANDA a 06 OO0 1 1 O
IORA & 07 OO0 I 1 |
XORA a 10 O1 00O
ADA a 11 Ol 00 I
ADB a 12 o1 01 ©
SFAa 13 o1 o1l |
SFBa 14 Ol 100
ADAC a 15 o1t | o1
ADBC a 16 ol 110
SFACa 17 O I 1 1 1
SFBCa 20 I 0O 00O
LDA & 21 f O 0 O |
LDBa 22 Il 001 ©
CMPA & 23 I 0 O | |
CMPB & 24 I O 1 OO
STA & 25 1 O 1 O |
STBa 26 I O 1 10
UNSTK a 27 (o O T B

Fig. 3:2 Memory Reference Instructions

* The Mnemonic code is meaningful to and translated by the Assembler into
binary code. 1In Usercode, Indirect is specified by attaching I to the
function mnemonic before the space, which is mandatory.

202(5.73) 1sS.1

There now follows an explanation of each instruction in the Memory
Reference Group. In each individual instruction description, the name
will be given first, followed by the appropriate assembler mnemonic.

Unconditional Jump - JUMP

Unconditional JUMP to the word of core specified by the operand.
The JUMP instruction loads the effective address of the instruction into
the Program Counter (PC), thereby changing the program sequence, since
the PC specifies the next instruction to be performed. The next instruction
is then taken from that location, the program continuing operation from
there. The JUMP instruction does not, in any way, affect the contents of
the Accumulators. It should be noted that a JUMP Direct to an Accumulator
will give unpredictable results.

Jump to Subroutine - JSBR

On this instruction the program will Jump to the word of core
specified by the operand. During execution of the instruction the current
PC is incremented by one and stored in Accumulator B, replacing or over-
writing any original contents. After the subroutine is executed, this
pointer address (of the JSBR instruction + 1), in other words the return or
link address, identifies the next instruction to be executed. Thus, the
programmer has at his or her disposal a simple means of exiting from the
normal flow of the program to perform an intermediate task, and a means of
return to the correct location on completion of that task, perhaps ending
with a Jump Indirect via Accumulator B. It should be noted that a JSBR Direct
to an Accumulator will give unpredictable results.

202(5.73) 18S.1

3#6

Increment, and Skip if Zero - INSZa

This instruction adds one to the contents of the word of core specified
(the operand), all 17 bits, and then examines the result of the addition.

If the result is zero, the instruction following the INSZ is skipped and
the Carry flag will be set.

If the result is not zero, the program will proceed normally to the

instruction immediately following the INSZ (the next word of program in sequence).

The following points should be kept in mind with reference to the
INSZ instruction :-

1) The contents of Accumulators A and B are not disturbed unless the
instruction specifies A or B as the operand.

2) The original word in the referenced memory location is replaced by the
incremented value.

3) The INSZ instruction performs the incrementation first and then checks
for a zero result,

4) The Carry flag is set whenever a transfer occurs between Bits 16 and 17
in any store as a result of the INSZ instruction.

Decrement, and Skip if Zero - DESZa

This instruction subtracts one from the contents of the word of core
specified (the operand), all 17 bits, and then examines the result of the
subtraction.

If the result is zero, the instruction following the DESZ is skipped.

If the result is not zero, the program will proceed normally to the
instruction immediately following the DESZ (the next word of program in
sequence).

Should the specified store overflow as a result of this instruction the
Carry flag will be set.

The following points should be kept in mind with reference to the DESZ
instrution :-

1) The contents of Accumulators-A and B are not disturbed unless the
instruction specifies A or B as the operand.

2) The original word in the referenced memory location (in other words the
operand), is replaced by the decremented value.

3) The DESZ instruction performs the decrementation first and then checks
for a zero result.

4) The Carry flag is set whenever a transfer occurs between Bits 17 and 16
in any store as a result of the DESZ instruction. (e.g. If the operand
contains Bit 17 only and is decremented, it will afterwards contain
Bits 16 to 1 inclusive, and the Carry flag will be set).

202(5.73) 1ss.1

/‘\

'

"And" to A -

ANDAA

the AND operation.
switch is said to have a value of 'l',

3:7

The ANDA instruction causes a bit-by-bit Boolean AND operation between
the contents of Accumulator A and the contents of the operand specified.
The result is left in Accumulator A, replacing its original contents, but the
operand specified is not altered.

Figure 3:3 below, showing a simple circuit with two switches, expains

because the switch is open, the switch is said to have a value of '@’.
When the whole circuit is considered it will be noted that current may only
flow through it (therefore giving it a value of 'l'), when both switches are

'1'.

This is the AND operation.

.- 40///07 4///07 L]

Fig. 3:3

When this is applied to binary numbers, a binary 1 will result if a

binary 1 appears in the relevant position of the two numbers, but a @ will

result if only one of the bits has this value.
instruction can be used to

e.g.

1)

2)

3)

Accordingly, the ANDA
Mask Out a portion of a number or word.

To be : retained for
Masked Out }{ future use
10111010101 } 010101 (17-bit word in Accumulator A)
00000000000 § 111111 (Mask in operand)
00000000000 ¢ 010101 (Result left in Accumulator A)

The following points sum up the ANDA instruction :-

A '1' is left in Accumulator A only when a 'l' is present in the
corresponding position of both Accumulator A and the specified word
of core (Mask).

The Carry flag is not affected, neither is the Greater Than flag, as
the operation is performed on a bit-for-bit basis.

The operand specified remains unaltered.

Acc. A | Operand Restxt in
(@) o) (o
(0] | (o)
| (0] O
| | |
Fig. 3:4

202(5.73) 1ss.1

Should current be allowed to flow through a switch, the
Where current cannot flow through

3

8

m

"Inclusive OR' to A - IORAA

The IORA instruction causes a bit-by-bit Boolean OR (or Inclusive OR)
operation between the contents of Accumulator A and the contents of the operand
specified by the IORA instruction. The result is left in A, replacing its
original contents, but the operand is not altered.

The circuit diagram in Figure 3:5 illustrates the use of the OR
connective when two words are combined. It can be seen that current is
allowed to flow to Z whenever EITHER X or Y switches (or both) is closed.

o
«
Y

Fig. 35 /n\
Z = 1 if X = 1 and ¥ = 1

Correspondingly, the IORA instruction results in the value of 1 if
either or both relevant bits of Accumulator A and the operand is 1.

e.g. A contents 110110
Operand 011010

Result (in A) 111110

The following points sum up the IORA instruction :-

1) A '1l' is inserted in Accumulator A if a 1 is present in the
corresponding position of either Accumulator A or the operand. 7~

2) - The Carry flag is not affected, neither is the Greater Than flag.

3) The specified word of core (operand) remains unchanged.

Acc. A | Operand R“"}\t in
o (o) (o
o) | |
[(@] t
| l |
Fig.3:6

202(5.73) 18s.1

"Exclusive OR" to A - XORAQ

" - S [‘
The XORA instruction causes a bit-by-bit Boolean "Exclusive OR'
roperation betyeen. the, coqtgpts of Agcumulator A and,the contents of the
oper §gg% 39,11?1)1 ‘by t e. XORA mstruct:.?%_,“,'rhe rqsuft;l 1)5' '].)gf‘t JJ,nLAccumulator A,
repigg*gg it g\origmal contents,,b t.the. operand §peci "ﬁ,ed is 1 gf a?tere by
edT | a5l LA L) ,"‘:}‘ j2) ’i.:.‘) 34U 903 Jud ,DAQUaEITN
'}‘ﬁ c1§cu;t.dlggram in ?131. Z}: /. eléx‘yrll(lusn{aﬂes !éh at.t l}e féal glve OR

AGJIuUFIen SO S IR]

is similar to the Inclueive OR with the exceptlon that one sei: of“conditions
has beendltered or exciuded. This exclusion has been shown by connecting
the two switches mechanically together so that it is Jﬁossﬂ:le for them to

LT

be closed, sxmu;kanéouély_ aI‘thngh_Lﬁ’e_yQ&a&.h oﬁén“ik. ﬁ&p‘é’o;sl‘ or, singly.
leiaieie alalelo]olealalela] (9]0
"'\"f‘j . 5 i B RO i i : i "‘D"
a3 b
s 7] ye2
{4 Lo o3
i.e. if X @
Z = 1 if X = @ and Y = 1

: ’
trnaitingie 3aom ol

aagged sels Liuow =25

The following points sum up the XORA instructizggai,; = H a4 LBA

1) A '1' is inserted in Accumulator A only if the two corresponding bits
of sthe rAcecumulator iand the: operanddiffersoiisurient LUA o7

aft grives! Lerid T1 fe (8 wevslumuescA 3o e3asinos sdl hop Dyow bailioage

2) iw =1ThejCatryvflagiis-netsaffectéd jcreithepis nthecGrdater sTHanofdgas

5543 vrasd =7 Jes Diluon goiitbhs 203 1o 3ivzaer adi Jud ,begasdonu mismex

3) The operand remains unaltered.

ol e b w013 35813 dUCS
Result in
Acc. A Operand A
e YEsOfra e ?s.an* noljoutiqoar AMe anT
03 Mo} dyon Yo b - baltinada =21 To edmelion
o fungpoA di o sogeusiiib ey gnivesl ,uyrd 1o Lis
: b gete g Ldueedaon adamet [iow suon io

| o) o Lga i vrsd sdd
] l o
Fig. 3:8

202(3% 73) 18§51

Add to A - ADAa

The ADA instruction performs a binary addition between the specified
word and the contents of Accumulator A, all 17 bits, leaving the result of
the addition in Accumulator A. The specified word of core will remain
unchanged, but the result of the addition could set the Carry flag. The
following figure (Fig. 3:9) illustrates the operation of the ADA instruction :-

Carry 716 16141312 11109 8 7 65 4321
+
Flog¢ ¢¢0¢¢¢¢°°¢$00°'O’Acct.:mulotor
—=3 in Dat
l'dllllllll-llllll¢l Word
Gy[] [e]elelelelelelo]ole]e[e]o[o o] 1]0]"2inA%A

In the example above, a carry has occurred between Bits 16 and 17,
and this has caused the Carry flag to be set. This could be detected with
a Register Instruction 'Skip if Carry'. Arithmetically the sign bit (Bit 17)
behaves in exactly the same way as the other 16 bits. As can be seen above,
the most significant bit of the answer was lost off the end of the register,
as would also happen if two stores containing Bit 17 only were added together.

Add to B - ADBa

The ADB instruction performs a binary addition between the
specified word and the contents of Accumulator B, all 17 bits, leaving the
result of the addition in Accumulator B. The specified word of core will
remain unchanged, but the result of the addition could set the Carry flag.

Subtract from A - SFAA

The SFA instruction performs a binary subtraction, subtracting the
contents of the specified word of core from the contents of Accumulator A,
all 17 bits, leaving the difference in Accumulator A, The specified word
of core will remain unchanged, but the result of the subtraction could set
the Carry flag.

202(5.73) 1Iss.1

3:11

Arithmetically, binary numbers may be directly subtracted in a manner
similar to decimal subtraction. The essential difference is that if a
'borrow' is required, it is equal to the base of the system of 2.

i-eo llo-
101

001

(decimal)

6
5
1

To subtract 1 from @ in the first column, a borrow of 1 was made
from the second column, which effectively added 2 to the first column.
After the borrow, 2 = 1 = 1 in the first column; in the second column
®-@ =¢; and in the third column 1 - 1 = @.

The following Figure 3:10 illustrates the operation of the
SFA instruction :- .

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Srv[0] [e]elelolelelole[e[o[o[e[e[o[e][0]0]0 inAcA
o[o[o][o[e[o[o[o]o[e]e]o]e][e]o]e] 1] wer™
o) GO e e e T o e

In the above example the 'borrow' is lost off the end of the register;
also a carry has occurred between Bits 16 and 17 which has caused the Carry
flag to be set. Again this could be detected with the register instruction

'Skip if Carry'.

Subtract from B - SFBA -

The SFB instruction performs a binary subtraction, subtracting
the contents of the specified word of core from the contents of Accumulator B,
all 17 bits, leaving the difference in Accumulator B. The specified word
of core remains unchanged, but the result of the subtraction could set the
Carry flag.

202(5.73) 1ss.1

3:12

Add with Carry (to Accumulator A) - ADACA

Multiple register addition is possible using the ADAC instruction.
This type of arithmetic is needed when a number that is too large to be
contained in one word (i.e. more than 65,535 in decimal), has to be added
to another similar number, or when the result of an addition may be too
large for a single register.

e.g. Two numbers 65,535 and 65,537 are to be added together

00000 0000 0000 0000 01111 1111 1111 1111
00000 0000 0000 0001 00000 0000 0000 0001

65,535
65,537

Let us assume that the 65,535 is double stored in Stores 0235 and 0236,
the 65,537 is double stored in Stores 0251 and 0252, and that the answer is
to be stored in 0276 and 0277. The first bit of program could read :-

CLC (Clear Carry)

LDA 0236 (Load A with 0236) 01111 1111 1111 1111

ADA 0252 (Add to A 0252) 00000 0000 0000 0001
(Result in A) 10000 0000 0000 0000

As Bit 17 is left on the presence of this bit denotes a negative
number, therefore it must be cleared before being stored in the answer store :-

CLSA (Clear Sign of A))
STA 0277 (Store A in 0277) 00000 0000 0000 0000

The first register has been added, and because a carry occurred between
Bits 16 and 17 the Carry flag will be set. Using ADAC for the addition of
the second pair of stores, the "with carry" will cause the Carry flag to be
added to the A register before the addition is started. The addition is then
completed normally.

LDA 0235 00000 0000 0000 0000

1l - Carry flag
ADAC 0251 00000 0000 0000 0001
STA 0276 00000 0000 0000 0010

The total left in Stores.0276 and 0277 now equals :-
00000 0000 0000 0010 00000 0000 0000 0000 = 131,072 (Decimal)

To sum up, on an ADAC instruction, the contents of the Carry flag (if
any) will be added to the contents of Accumulator A, the Carry flag will be
cleared, and the contents of the word of core specified will then be added to
Accumulator A, The store specified will remain unchanged.

N.B. It should be pointed out that the Carry flag could be set again by
the additionm.

This instruction is used for double or multiple store arithmetic.

I3

-
202(5.73) 18S.1

3:13

Add with Carry (to Accumulator B) - ADBCA

Exactly as for ADAC, except that the contents of the Carry flag (if
any) will be added to the contents of Accumulator B, the Carry flag will
be cleared, and the contents of the word of core specified will then be
added to Accumulator B, The store specified will remain unchanged.

N.B. The Carry flag could be set again by the actual addition.

This instruction is used for double or multiple store arithmetic.

Subtract Store from A with Carry - SFACa

The contents of the Carry flag (if any) will be subtracted from the
contents of Accumulator A, the Carry flag will be cleared, and the contents
of the word of core specified will then be subtracted from Accumulator A.
The store specified will remain unchanged.

N.B. The Carry flag could be set again by the actual subtraction.

This instruction is used for double or multiple store arithmetic.

Subtract store from B with Carry - SFBCa

The contents of the Carry flag (if any) will be subtracted from
the contents of Accumulator B, the Carry flag will be cleared, and the
contents of the word of core specified will then be subtracted from
Accumulator B. The store specified will remain unchanged.

N.B. The Carry flag could be set again by the actual subtraction.

This instruction is used for double or multiple store arithmetic.

Load into A - LDAA

]
LDA stores the contents of the referenced location in Accumulator A,
over-writing the original contents of Accumulator A. The specified word

of core remains unaltered.

Load into B - LDBA

LDB stores the contents of the referenced location in Accumulator B,
over-writing the original contents of Accumulator B. The specified word
of core remains unaltered.

202(5.73) 1sS.1

3i:14

§

Compare store with A (skip if unequal) - CMPAA

This instruction compares the contents of the word of core specified
with the contents of Accumulator A, all 17 bits. If the two words are
different the next instruction will be skipped (i.e. the PC is advanced by
two instead of one). If both words are identical, the program will proceed
normally to the next instruction in sequence. The contents of both the
specified word of core and Accumulator A remain unaltered.

Should the contents of Accumulator A b greater than the contents
of the word of core addressed, the Greater Than flag will be set (but NOT
the Carry flag).

Should the contents of Accumulator A be less than or equal to the
contents of the word of core addressed, the Greater Than flag will be cleared
(but NOT the carry flag).

Compare store with B (skip if unequal) - CMPBA

This instruction compares the contents of the word of core specified
with the contents of Accumulator B, all 17 bits. If the two words are
different the next instruction will be skipped (i.e. the PC is advanced by
two instead of one). If both words are identical, the program will proceed
normally to the next instruction in sequence. The contents of both the
specified word of core and Accumulator B remain unaltered.

Should the contents of Accumulator B be greater than the contents
of the word of core addressed, the Greater Than flag will be set (but NOT
the Carry flag).

Should the contents of Accumulator B be less than or equal to the
contents of the word of core addressed, the Greater Than flag will be
cleared (but NOT the Carry flag).

Store A - STAA

The STA instruction stores the contents of Accumulator A in the
word of core specified, over-writing the original contents of the referenced
location. Accumulator A remains unaltered.

Store B - STBa

The STB instruction stores the contents of Accumulator B in the
word of core specified, over-writing the original contents of the referenced
location. Accumulator B remains unaltered.

202(5.73) 1SS.1

am

~
~

3:15

Unstack - UNST&&

This is a Privileged Instruction, and may be used only in the system
software, It has been assigned the function "Unstack", the address specified
normally referring to 000030, thus pointing to that part of the Interrupt
Stack indicated by the Interrupt Stack Pointer.

The 'Unstack' instruction first restores the contents of Accumulators
A and B, the Base Register, the Program Counter and the Carry and Greater Than
flags and then :-
(i) Uses the sign bit of the 2nd word in the appropriate stack to
set the Addressing Mode Memory (see Page 1:6) to the correct
state.
(ii) Reduces the Interrupt Stack Pointer by 5.
(iii) Uses Step Ol relative to the Base to set the Limit Register.
(iv) Sets Interrupt on.

(v) Causes a JUMP to the step specified in the PC.

b) REGISTER AND CONTROL INSTRUCTIONS

These instructions, in general, manipulate bits in the A and B accumulators.
There is no reference to memory, thus the instructions are executed in only one
machine cycle. Register and Control Instructions have the following general
format in Machine Language :-

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IOPERATlON CODE (00)|MODE A/B REGISTER MICRO — INSTRUCTIONS

Fig. 3:11

The instruction word uses Bits 17-13 to specify the type of instruction
(being all zeros for Register amd Control instructions), Bits 12 and 11 to specify
the Mode, Bit 10 to specify the relevant Accumulator and Bits 9 to 1 to combine in
'micro-instructions', with the resulting multiple instruction operating on the
A or B accumulators as a single-word instructionm.

Micro—-instructions may be combined under the following general rules :-

1) No instructions may be used which combine micro-instructions from
different Modes. '

2) References to both A and B registers cannot be mixed in the same micro-
instruction.
3) If more than one of the micro-instruction bits of a particular Mode is set

at any one time, the sequence of execution is left to right (Bit 9 to Bit 1).

4) If two (or more) skip functions are combined, the skip will only occur if all
conditions are fulfilled. One exception exists: In Mode 1 only, the skip
will occur if either or both conditions are met.

5) Shift and Rotate or Increment and Decrement must not be mixed in the same
micro-instruction - the effect of doing so is undefined. :

202(5.73) 1sS.1

3:16

MODE - there are four modes - the mode alters the meaning of the micro-
instruction bits. N
Mode O Mode 2
Mode 1 Mode 3
Mode O

The Mode O instructions contain 27 basic instructions, only 7 of which will
be used by the Applications programmer, the other 'control' instructions being
'Privileged’', and only used by the system software. Each Mode O instruction has
its own binary structure as shown in Fig. 3:12 below. These instructions are
not micro-programmable. ‘

1716151413 121110 9 8 7 6 5 4 3 2 1 Octal
Mnemonics | o | e OJOIO ‘I'I‘ ‘I‘I‘ o Bl K OIOIO Representation
NOP; |O O|O O O|O O 0|0 O 0|0 O 0|0 0 Ol 0O000O
HALT; |O 0|0 O O(0 0 0jO0 O 0|0 0 0|0 O 1| 000001
MASK; |O 0|0 0 0|0 O O|0 O 0|0 O O|0 | O| 000002 ~
ACK; |0 0|0 O Oj0OOO|0OOO|0OOO|O I || 000003 ~
ION; |0 OO0 0O 0O|l0OOO|O OO|(0OOO|I OO0O| 000004
IOF; |O 0|0 O O[O0 OO|0O O O[O OO|I O I| 000005
SKON; |O 0|0 0 0|0 O 0|0 O 0|0 O OfI | O| 000006
SKOF; [0 0|0 O 0|j]O 0O O[O O 0j0O O O|I I 1| 000007
SKMF; [0 0|0 O O|O 0 0[O0 O O|O O I|O O O| 0OOOI0O
SKMR; |0 0|0 O O[O0 O O|0O O O[OO I|O O I| 00COOII
SKMP; |0 O|O0 O OO0 O 0|0 0O O|OO I|O I O| 0OOOI2
SKPM; |0 0|0 O OO OO|0O O O|OO I|I O 0| 0OOO!4
SKSW; |0 0|0 0O 0|0 O O[O O O|OO I|lI O I|0O000IS
SKIC; [0 oJlo 0o ojo 0O O|OOOC|OO I|I I O] 0OOOI6
RIO; |0 OO OO|OOO|OOOIOO I|I | || 000017 ™
SK7L; [0 0|0 0 0|0 0O O[O O O[O I O|0 O O 000020
S$K15; |0 O|/O O 0|0 O O|0O O 0O|0O | O|O0 O 1| 000021
SKTI; |O O|O O O[O0 O O|0O O O[O | O|]O | O| 000022
SKIF; |o 0olo 0o oloooO|0OO|O I Ol0 I 1| 000023
SKEX; (O OO O O|O 0O O|0O O O|O | O|I O O 000024
SRLD; |0 0lo 0o o|looo|1 o0 1|1 0oo|o o o|ooosa0
SRAD; [0 O|O O O|OOO|lI O1I]|lI | O|lO O O| 0OOS560
SLLD; |0 000 Of0O0O|l I I|l O0|0O O O| 0OO740
SLAD; |0 O(0oOOf0oOO|I I 1|1l | OlO 00| 000760
EXC; [0 OO 0O OO0 1|00 O[O O O[O O O] 001000
SETGT; (O O|O O O|OO I|0O O O[O0 O 0|0 O 1| 00IOOI
Fig. 3:12)

202(5.73) 1sSs.1

3:17
The operation of the 7 Mode O instructions in general use is first

’_4\ described below :-

No Operation - NOP;

If all bits are zero, no operation is performed and program control is
transferred to the next instruction in sequence.

Shift Right Logical Double Length (one place) - SRLD;

This instruction causes a double length single shift, in that a double
length Accumulator (comprised of Accumulators A and B) is shifted right one
place, as per Fig. 3:13 below :-

_ Accumulator A Accumulator B

17 17 -
i 4 J.

Zero is Bit 1 is Bit 1 is lost
moved into propagated but sets Carry

Bit 16 of Acc. A into Bit 16 flag if set
of Acc. B
Fig. 3:13

Bits 16 to 1 of both accumulators are shifted one place to the right,
Bit 17 (the sign bit) of each remaining stationary. A zero is moved into
position 16 of Accumulator A. The contents of Bit 1 of Accumulator A are
propagated into Bit 16 of Accumulator B, but without affecting the Carry flag.
Should there be a '"l' bit in position 1 of Accumulator B the Carry flag will
be set, the 'l' bit being otherwise lost. (If there is a '@' bit in position 1
of Accumulator B the Carry flag, should it be set already, will not be overwritten.)

Shift Right Arithmetic Double length (onme place) - SRAD;

This instruction causes a double length single shift, in that a double
length accumulator (comprised of Accumulators A and B) is shifted rlght one
place, as per Fig. 3:14 below :-

Accumulator A Accumulator B
17 . _ 17 _
A _g -
State of sign Bit 1is Bit 1 is lost
bit propagated propagated but sets Carry
to Bit 16 but into Bit 16 flag if set
sign bit also of Acc.B
remains unchanged Fig.3:14

Bits 16 to 1 of both accumulators are shifted one place to the right,
Bit 17 (the sign bit) of each remaining unchanged, although the state of the sign
bit of Accumulator A is propagated into Bit 16 of Accumulator A. The contents
of Bit 1 of Accumulator A are propagated into Bit 16 of Accumulator B, but
without affecting the Carry flag. Should there be a 'l' bit in position 1 of
Accumulator B, the Carry flag will be set, the 'l' bit being otherwise lost.
(If there is a '@' bit in position 1 of Accumulator B, the Carry flag, should
it be set already, will not be overwritten.)

202(5.73) 18S.1

Shift Left Logical Double length (one place) - SLLD;

This instruction causes a double length single shift, in that a double
length Accumulator (comprised of Accumulators A and B) is shifted left one
place as per Fig. 3:15 below :-

Accumulator A ‘ Accumulator B

17 = 17 ~

| — “ . w_/
Bit 16 is lost Bit 16 is Zero is

but sets Carry propagated moved into
flag if set into Bit 1 : Bit 1 of

"of Acc.A Acc.B r
Fig.3:15 : -

Bits 16 to 1 of both accumulators are shifted one place to the left,
Bit 17 (the sign bit) of each remaining stationary. A zero is moved into
position 1 of Accumulator B. The contents of Bit 16 of Accumulator B are
propagated into Bit 1 of Accumulator A, but without affecting the Carry flag.
Should there be a 'l' bit in position 16 of Accumulator A, the Carry flag
will be set, the 'l' bit being otherwise lost. (If there is a '@' bit in
position 16 of Accumulator A the Carry flag, should it be set already, will
not be overwritten.)

Shift Left Arithmetic Double length (one place) - SLAD;

This instruction is identical to SLLD (above), as per Fig. 3:16 below :-

Accumulator A Accumulator B :
17 - 17 _

o N L ~/
Bit 16 is lost Bit 16 is Zero is

but sets Carry propagated : moved into
flag if set into Bit 1 Bit 1 of
of Acc.A Acc. B
Fig. 3:16

User call of Executive - EXC;

This instruction is used when Executive is needed to carry out a task.
It gives rise to an internal interrupt, which eventually causes the program to
go to location 000210.

Set Greater Than Flag - SETGT; 7\

This instruction causes the Greater Than flag to be set.

202(5.73) 1ss.1

3:19

The operation of each individual 'Privileged' control instruction is
briefly described below :-

Halt - HALT;

If Bit 1 is set and all other bits are zero, the computer will stop

at the conclusion of the current machine cycle.

Mask Out - MASK;

This instruction sets up the Interrupt Disable flags of each device,
according to a pattern or mask set up in Accumulator A - each device's
Interrupt Disable flag is set or cleared as the corresponding bit in the
(The Mask Bit No. chart is shown in Fig. 3:17 below.)

Mask is 1 or @.

with ascending Binary order.

Mask Bit Numbers

Device

Tape Reader

Card Reader

Single Shot

Line Printer

Serial Printer

Display (Alpha/Numeric)
Tally Roll Printer
Keyboards

Card Feeds

Form Feeds

Punch

80 Column Card Reader
IBM Input

IBM Output

Modem Coupler transmit
Modem Coupler receive
Disc

Mask Bit No.

ANO WINPT WNNDNNDE -

—

Fig.3:17

The Mask Bit numbers refer to I/O Bus Bits 1 to 17 numeric

Every device is wired to a particular data

line on the in-out bus and hence to a particular bit of the mask. Although
slower devices are assigned to the higher numbered bits in the mask, there
is no established priority as the program can use any mask configuration.

202(5.73) 18s.1

20

Acknowledge Interrupt - ACK;

This instruction determines which is the highest priority device
awaiting service by reading its device code into Accumulator B, assuming
an I/0 Interrupt is pending. ACK can read the code of only one device at
a time, whichever of those waiting has the highest priority. This is
normally determined by the positions of the I/O Boards in the chassis,
i.e. the further from the processor, the lower the priority. When two
devices share a single I/0 Board (e.g. Keyboard and Fast Serial Printer/
Display) the relative priority is fixed (Keyboard higher).

Interrupt On - ION;

This instruction sets the Interrupt On flag, to allow the processor
to respond to interrupt requests. If interrupt is disabled when this
instruction 1s given, the CPU executes the next instruction (step) and
then enables interrupt.

Interrupt Off - IOF;

This instruction clears the Interrupt On flag to prevent the processor
from responding to I/0 interrupt requests, and also prevents all internal
processor interrupts.

Skip if Interrupt On - SKON;

This will skip the next instruction if interrupt is on.

Skip if Interrupt Off - SKOF;

Thiswill skip the next instruction if interrupt is off.

Skip if Mains Failure Interrupt - SKMF;

This will skip the next instruction in sequence when an internal
interrupt is called by a power failure. If the skip is taken, the Interrupt
will be reset.

202(5.73) 1ss.1

3:21

Skip if Mains Return Interrupt - SKMR;

This will skip the next instruction in sequence when an internal
interrupt is called when power is restored. If the Skip is taken, the
Interrupt will be reset.

Skip if Memory Parity Interrupt - SKMP;

This will skip the next instruction in sequence when an internal
interrupt is called in the case of a memory parity failure. If the skip
is taken, the interrupt and also the lamp will be reset.

Skip if Memory Boundary Interrupt (Limit) - SKPM;

This will skip the next instruction in sequence when an internal
interrupt is called by the program selecting an address outside the bounds
of the Limit Register. If the skip is taken, the interrupt will be reset.
(The Memory Boundary Interrupt is only applicable when in User mode.)

Skip if MA = Switch Register - SKSW;

This will skip the next instruction in sequence when an intermal
interrupt is called when the memory address equals an address previously
set on the Data switches. If the skip is taken the interrupt will be
reset.

Skip if Continuous Interrupt Switch Interrupt - SKIC;

This will skip the next instruction in sequence where an internal
interrupt is called after each step. If the skip is taken, the interrupt
will be reset.

I/0 Reset - RIO;

This instruction clears the flags of all Input/Output devices
connected to the computer.

202(5.73) 1ss.1

3:22

Skip if 7th Level Interrupt - SK7L;

This will skip the next instruction in sequence when an internal
interrupt is called if a certain one-bit memory register has been set
by entry of the 7th level stack. If the skip is taken, the interrupt
will be reset.

Skip if Greater Than 15 Indirects Interrupt - SK15;

This will skip the next instruction in sequence when an internal
interrupt is called by more than fifteen indirects being 'chained'. If
the skip is taken, the interrupt will be reset.

Skip if Timer Interrupt - SKTI;

Skip if Illegal Function Interrupt - SKIF;

This will skip the next instruction in sequence when an internal
interrupt is called by a 'Privileged' instruction being used by program while
the Addressing Mode Memory is set to zero. These instructions cannot be
allowed to be used by a User program running under the Operating System, as
they are likely to interfere with the running of other programs. For the
purposes of this specification, an 'Illegal Function' is defined as :-

a) All Input/Output Instructions without exception

b) All Register and Control Instructions in Mode O with the
exception of the 7 instructions mentioned on Page 3:17.

If the skip is taken, the interrupt will be reset.

Skip if Extracode Interrupt - SKEX;

This will skip the next instruction in sequence when an interrupt is
called by the 'EXC' instruction (see page 3:18). If the skip is taken, the
interrupt will be reset.

202(5.73) 1ss.1

3:23

Mode 1
The Mode 1 instructions include 21 basic instructions which can
?anipulaFe the contents of Accumulators A or B and the Carry flag. These
%nstruct%ons are m%cro-programmable; that is, they can be combined with other
instructions also in Mode 1 to perform specialised operations (see also
Page 3:24). There now follows a selection table for Mode 1.
17 16 1514 13 12 1110 9 7 6 54 3 2 Octal
Mnemonics o o ojojo|o|[ejolo]|ejojo|ofo|e|e]|e]| Representation
CLC,; oolooolol oll oolooolooo 002400
LSA; Oo0|0oO0 OOt I|OI IJOOO|O OO 003300
LSB, O0|0O0 O[O I OO 1T I|OO0OO0O|O OO 002300
2 RSA; oolooolo 1 Ilooi|looo|o oo oo03100
RSB, O 0|0O0O0O|O I O|OO I|OOO|O OO 002100
LRA; Oo|j0O0O0O|OI I|O I OJI OO|O OO 003240
RRA; 00|00 OO I I|]OOO|I OO|O OO 003040
LRAC; O0j0OO0O0O|0O I IO I O]l 1 OJ]O OO 003260
RRAC,; O 0j0O0OO0O|O0O Il 1]JOOO|I I O]O OO 003060
LRB,; O O(OO0OO0O|O I OO I OJ]I OO|]O OO 002240
RRB; O0|OO0 OO I O]OOO|I OO|O OO 002040
LRBC,; O0|O0O|O I O[O I OjI I O]O OO 002260
RRBC; O0j0O0O|O I O[OOO|I | OO OO 002060
DECA; OOo0(0OO0 OO Il IJOOO[OOI|OO0O 003010
) DECB; O0l/OO0O0O|O I O|OOO|OO0I|OO0O 002010
INCA; ooloooloi 1|looo|looo|l 00 003004
INCB; O OO O O|O | OjOOO(OOO|I OO 002004
AMSB,; OO0O|l0OO0OO|O I I|[OOO|OOO|O I O 003002
BMSB, O 0|00 OO | O]OOO|OOCO|O I O 002002
ALSB; O0|OO0 O[O 1T I]1OOO|OOO|OO I 003001
BLSB,; oolooo|lo | ol]ooolooo|loo 002001
; Fig.3:18

202(5.73) 1s8s.1

3:24

Micro-programming

If, for instance, it is desired to clear Carry and Left Shift
Accumulator A, to perform this task the program could include the following
instructions (given in both mnemonic and octal form).

CLC; 002400
LSA; 003300

However, when the Mode 1 instruction format is analysed, the following
can be seen :-

1716150 34513512510, 10948 7
QO OO OO p byl

o|w
ols
O |w
o|m
O

6
0]

—— S e
Operation Mode / \cht Shift
Code Acc. Clear

A Eig.3119

Since the CLC and LSA instructions occupy separate bit positions they
may be used in the same instruction, thus combining the two operations into
one instruction. This instruction would be written in Usercode as CLC,LSA;
which is 003700 in octal. In this manner, many more Register instructions,
separated by a comma, may be combined to make the execution of the program
more efficient.

The operation of each individual instruction specified by Bits 10 to 1
is described below :-—

Clear Carry -~ CLC;

This imstruction causes the Carry flag to be cleared.

LetErShift A loxr SB = TISA;“ o'x IxSR¥:

Bits 16 to 1 of the specified accumulator will be shifted one place to
the left. Bit 17 (the sign bit) of the accumulator to be shifted remains
stationary.

If there is a 'l' bit in position 16 of the accumulator, the Carry flag
will be set after a left shift,

If there is.a 'O' bit in position 16 of the accumulator, the Carry flag,
should it be set already, will not be overwritten after a Left Shift,

202(5.73)= ISS .1

3:25
Right Shift A or B - RSA; or RSB;

Bits 16 to 1 of the specified accumulator will be shifted one.place to
the right., Bit 17 of the accumulator to be shifted remains stationary.

If there is a 'l' bit in position 1 of the accumulator, the Carry flag
will be set after a right shift.

If there is a 'O' bit in position 1 of the accumulator, the Carry flag,
should it be set already, will not be overwritten after a Right Shift.

Left Rotate A or B - LRA; or LRB;

This instruction rotates Bits 1 to 16 of the specified accumulator one
place to the left,

i.e. One left rotate will perform as for one left shift, except that
the figure which was in Bit 16 will re-enter the Accumulator at Bit 1.

Pam The Carry flag is not affected. In other words, it treats Bits 1 to 16

of the specified accumulator as a closed loop, and performs what is commonly
called a circular shift, meaning that any bit rotated off the left end will
re-appear at the right end.

e.g. one left rotate of L0110 1100 0110 0101V
gives 1101 1000 1100 1010

Right Rotate A or B - RRA; or RRB;

This instruction rotates Bits 1 to 16 of the specified accumulator
one place to the right.
i.e. One right rotate will perform as for one right shift, except that
the figure which was in Bit 1 will re-enter the Accumulator at Bit 16.
The Carry flag is not affected. In other words, it treats Bits 1 to 16
of the specified accumulator as a closed loop, and performs what is commonly
called a circular shift, meaning that any bit rotated off the right end will

7 re-appear at the left end.

e.g. one right rotate of Y0110 1100 0110 01014
gives 1011 0110 0011 0010

Left Rotate A or B with Carry - LRAC; or LRBC;

This instruction causes any previous Carry flag to be introduced into
the gap left by the rotate, and the bit rotated off the left end will replace
the Carry flag. In other words, it treats Bits 1 to 16 plus the Carry flag
as a closed loop, and performs a circular shift as previously described.

f
e.g. 0110 1100 0110 0100

PP
«

Carry , Y
Flag 1s 1

after one left rotate with Carry would read :-

’ Carry .
~ 1101 1000 1100 1001 Flag is @

Rotate with Carry is used for multiple store shifting.

202(5.73) 18Ss.1

Right Rotate A or B with Carry - RRAC; or RRBC;

This instruction causes any previous Carry flag to be introduced into
the gap left by the rotate, and the bit rotated off the right end will
replace the Carry flag. In other words it treats Bits 1 to 16 plus the
Carry flag as a closed loop, and performs a circular shift as previously
described.

e.g. Y0110 1100 0110 0100 SATTY 5o 1]
flag

g

after one right rotate with Carry would read :-

Carry is @

1011 0110 0011 0010
Flag

Rotate with Carry is used for multiple store Shifting.

Decrement A or B - DECA; or DECB;

This instruction will decrement the contents of the specified
Accumulator by 1.

Increment A or B - INCA; or INCB;

This instruction will increment the contents of the specified
accumulator by 1.

Skip if Bit 16 of A or B equals zero - AMSB; or BMSB;

This instruction causes the program to skip the next step if Bit 16
of the specified accumulator is zero.

Skip 1f Bit 1 of A or B equals zero - ALSB; or BLSB;

This instruction causes the program to skip the next step if Bit 1
of the specified accumulator is zero, or, in other words, if there is
an even number in the accumulator.

202(5.73) 1S8s.1

- 1°SST (g£L°S)zoz

oz:¢€ ‘614
1 0O0P0O | 0O 0l00O 0|0 O0O|OO 1|00 O|O O ‘Qums3
100S00] 00|00 O0|0OO0O|I O 1|00 0|0 O <{vims3
200P00 01 0|00 O|0OO O[O0 1|00 0|0 O| ‘@asdnod
200500 Ol O|[00O0|0OOO|!I O 1I|00O O[O0 Of {vsdnOD
#00r00 OO l1|000O(0OOO|OOI|OO O|OO ‘gs12
#00S00 0O I|l0o00O|OOO|lI O I|l0OOO|OO ‘vs1d
01000 OO0 Ol OO|lOOO|(OO I|OOO|OO ‘QdVMmS
010500 OO0 0|l 0OO|OOO[I O 1|00 O|O0 O ‘vdvms
02or00 0O0C|OI 0jl0O0OO|0OOI|0OOO|OO tdids
ororoo (0 0O 0|00 1|0 00|00 1|0 O O[O0 Of (2dWOD
ooIw00 [0 O O|OOO|I OO|lOO I|OOO|OO £0979
002¥00 |0 O O|O O O|(O 1 O|0O O 1|0 O O|0 O| {8dNOD
002S00 ocoolooo|lo10|I o 1{ooo|loo| ‘vdwod
00r 00 0Oo0o0O|j0OO|lOO I(0OO I|0OO|OO -l bl
ooPSOO0 [0 0O O|l0OO|OO 1|l O I|/OO O|OO ‘v1o
U01DJU2S2109Y e [e | e [o|e[o|e|e0|e|[o|e|[e|e|[e|e|e|e SOUCWUW
1990 Il 2 €EP S 9 LB 6OLLLCLE PLSLOL LI

-: T 9POW 103 9Iqe], UOTIIOIT38

® SMOT[OF mou 213y] °paure]dxs A[snoiasad se ‘sjqeumeaBdoad-oxdrIm aixe

suor3onajisur 9say] °*Je(3y £1ae) 9yl pue g PuB Y SIOIBINUNODY JO SIUIIU0D 3Y3
juswaTdwod pue IBITD UBD YOTIYM SUOTIONIAISUT DISBq G SIPNTOUT IPOW STYJ

¢ ®POKR

Lz:e

The operation of each individual instruction specified by Bits 10 to 1
is described below :-

Clear A or B - CLA; or CLB;

This instruction sets the specified accumulator (all 17 bits) to zeros.

Complement A or B - COMPA; or COMPB;

This instruction causes the specified accumulator (all 17 bits) to be
set to the one's complement of its original value; that is, all ones become
zeros, and all zeros become ones.

e.g. Before one's complement = 01000 1100 1110 1111
After one's complement - 10111 0011 0001 0000 Ve

Clear Carry - CLC;

This instruction causes the Carry flag to be cleared.

Complement Carry - COMPC;

This instruction causes the state of the Carry flag to be complemented
(i.e. reversed).

Unconditional Skip - SKIP;

This instruction causes the program to skip the next step, unconditionally.

Swap A or B - SWAPA; or SWAPB;

~
This instruction causes the contents of the top half (Bits 16 to 9) of :

- the specified accumulator to be swapped with the contents of the bottom
half (Bits 8 to 1) of the said accumulator. The sign bit is not affected.

Clear Sign of A or B - CLSA; or CLSB;

This instruction causes the sign bit (Bit 17) of the specified accumulator
to be cleared (set to zero). '

Complement Sign of A or B - COMPSA; or COMPSB;

This instruction causes the state of the sign bit (Bit 17) of the
specified accumulator to be complemented (i.e. reversed).

" Enter Switch Register into A or B - ESWRA; or ESWRB;

v

This instruction causes whatever is set on the Data Switches of the Control/™
Panel to be loaded into the specified accumulator. L

202(5.73) 1ss.1

Mode 3 - contains 18 basic instructions which enable the programmer to
perform tests on the Accumulator, Carry flag and Greater Than flag and to
skip the next instruction depending on the results of the test. The group
is sub-divided into two sections, the instructions of which canmot be mixed
together, although s8ix instructions (CLC, CLGT, CLA, CLB, COMPA and COMPB)
appear in both sections. The Selection Tables for the two sub-sections
now follow :-

SECTION 1
17 16 151413 2 1110 9 8 7 6 5 4 3 2 1 Octal
Mnemonics ojo|o|o|ojejo|/o|jeo|eofe|e|e]|e]|e|c|e]| Representation
ANEG; OO0|0OO0OO|rI 1 I}l 1 OJO O 0|0 O O| 007600
BNEG, O OO O0OO|I I OJI 1 OJO O0O|O O O} 006600
ANO; OO0j0OO0O|t I I'|l OI|OOO|O O O| 007500
BNQ; OO0O|OO0OO|Il I O]l OI]O OO|O O O] 006500
SKC; O OO OO|I I O]l OO|I OO|O O O| 006440
CLC; O OO OOl I OJ]OOO|O | OO O O] 006020
SKGT; O O0/0OO0O0O}lI | O]l OO|O O I|O O O] 006410
CLCT; OOVOOOIIOOOOOOOIOO 006004
CLA; OO0|0O0O|]Il I 1|]OOO|OOO|O I Of 007002
cLB,; O 0|0 0Ol | O]O OO|OOO|O I O] 006002
COMPA; |O O[O O Oj!I I' 1|/O O O|O OO|O0O O I| 007001
COMPB; [0 OJO O O}l | OO O OO O O|O0 O || 006001
SECTION 2
o|lojo|e|o|o|jejo|eo|o|jojo|e]e|e]e]|e
APOS; OO0{0OO0O0O}|l I 1|O I OO OO0O|O0 O O] 007200
BPOS ; OO0OjOOO|I | O]O I O|]O O 0O|O O O] 006200
AQD, O 0j]OOO|l I 1]OO 1]OO0OO|O O O] 007100
BO; O O0/0OO0OO|lI | OJOO I|O O O|O O O} 006100
SKNC; O 0{0 O O|I | OJ]JOO Ol O O]O O Of. 006040
CLC;, OO0/O0O0O|]I | O]OOO|O I OO O O| 006020
SKNGT, [0 O|O O Oj! | O[O O O|O O I|O O O| 006010
CLGT; O O0|OO0OO|l | O]OO 0|0 OO|!I O O| 006004
CLA; OO0(0O0O|Il I 1|l1OOO|OOO|O0O 1 O] 007002
cLB,; OO0|0OO0O0|Il | OJOOO|OOO0O|O I Of 006002
COMPA; OOOOOIIlOOOOOOOOi 007001
COMPB; (O O|O O O]l | OJ]O O O[O O O|O O I| 006001
Fig.3:21

202(5.73) 1Ss.1

3:30

The operation of each individual instruction specified by Bits 10 to 1

is described below, under the two Section headings :-
SECTION 1

Skip if A or B is negative - ANEG; or BNEG;

This instruction causes the next instruction to be skipped if the
contents of the specified accumulator are negative (i.e. if the sign bit
is set).

Skip if A or B is not zero - AN@®; or BN@;

This instruction causes the next instruction to be skipped if the
contents of the specified accumulator are not zero (i.e. if any of
Bits 1 - 17 is set).

Skip if Carry =~ SKC;

This instruction causes the next instruction to be skipped if the
Carry flag is set.

Clear Carry - CLC;

This instruction causes the Carry flag to be reset (cleared).

Skip if Greater Than - SKGT;

This instruction causes the next instruction to be skipped if the
Greater Than flag is set.

Clear Greater Than - CLGT;

This instruction causes the Greater Than flag to be cleared.

Clear A or B - CLA; or CLB;

This instruction sets the specified accumulator (all 17 bits) to zeros.

Complement A or B - COMPA; or COMPB;

This instruction causes the specified accumulator (all 17 bits) to be
set to the one's complement of its original value; that is, all ones become

zeros, and all zeros become ones.

202(5.73) 1s8s.1

3:31

SECTION 2

Skip if A or B is positive - APOS;.or BPOS;

This instruction causes the next instruction to be skipped if the
contents of the specified accumulator are positive (i.e. if the sign bit
is not set).

Skip if A or B is zero - A@; or B@;

This instruction causes the next instruction to be skipped if the
contents of the specified accumulator (all 17 bits) are zero.

Skip if Not Carry - SKNC;

This instruction causes the next instruction to be skipped if the
Carry flag is not set.

Clear Carry - CLC;

This instruction causes the Carry flag to be reset (cleared).

Skip if Not Greater Than - SKNGT;

The next instruction will be skipped if the Greater Than flag is not
set. :

Clear Greater Than - CLGT;

This instruction causes the Greater Than flag to be cleared.

Clear A or B - CLA; or CLB;

This instruction sets the specified accumulator (all 17 bits) to zeros.

Complement A or B — COMPA; or COMPB;

This instruction causes the specified accumulator (all 17 bits) to be
set to the one's complement of its original value; that is, all ones become
zeros, and all zeros become omnes.

202(5.73) 18S.1

c¢) LITERAL (I/O, SHIFTS, etc.) INSTRUCTIONS

As all Input/Output instructions are deemed Privileged, this section
describes first the Literal functions, which deal with multiple short shifts and
rotates. These Literal functions have the following format in Machine Language :-

17 16 15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1

A A AR A KA
OR CODE MODE No.of Shifts
(alt zeros) or Rotates (O to 15 Dec.)
{
Fig.3:22 : ;,

The instruction word uses Bits 17-13 to specify the operation code (being
all zeros for Literal functions), Bits 12 and 11 to specify the Mode (again both
zeros), Bit 10 to specify the relevant accumulator, Bit 9 on to specify Specialm
Shift, Bit 8 to specify Left or Right, Bit 7 to specify Shift or Rotate, Bit 6
being always zero, Bit 5 to specify Arithmetic or Logical and Bits 4 to 1 to ~
indicate the number of shifts or rotates required (@ to 15). These instructions
are not micro-programmable.

Fig. 3:23 below shows the binary structure of each Literal instruction,
but without showing the number of shifts or rotates required. (The number
(@ to 17 Octal) should be added in Octal.)

1716151413 1211109 8 7 6 5 4 3 2 1 Octal
Mnemonics [e | e [elelelo]lelolelelelele ° o | Representation)
SLAAA@; |O O|O O O[O O 1|1l I 1|0 | NO.OFSHIFI§ 001720
: OR ROTATES

SLABa®; O O|O O O|O O OfI 1 1|O | 000720
SRAAA®;, |{O O|O O OO O ||l O I|O | 001520
SRABaA®; |0 O|O O O|O O Ol O I{O | 000520 &
SLLAA®;|O OO O O|OO Il I I|lOO 001700
SLLBa®; (O O|O O O[O O O|I I 1|OO 000700
SRLAa®; O OO O OO O I|I O I]OO 001500
SRLBa®;|O O|O O O|O O OfI O I|O O 000500
RLMAA®; |0 O|O O OO O IfI | O|jOO 001600
RLMBa®;]0 O|O O O[O O OfI I O|O © 000600
RRMAA®; |0 O|O O OO O I|I O O|O O 001400
RRMBa®;|0 O|O O O|O O O|! O OjO O 000400

Fig. 3:23 -~

202(5.73) 1ss.1

3:33

The operation of each individual instruction is briefly described
below :-

Shift Left Arithmetic A or B - SLAA or SLAB

Bits 16 to 1 of the specified accumulator will be shifted left the
gpecified number of places. The sign bit (Bit 17) remains unchanged.

Any bit shifted off the top of the register sets the Carry flag but is
otherwise lost. A zero will be inserted in Bit 1 on each left shift.

e.g. SLAAA4; "of 0O 0110 1100 0110 0101
gives 0 1100 0110 0101 0000 (with Carry Flag set)

Shift Right Arithmetic A or B - SRAA or SRAB

Bits 16 to 1 of the specified accumulator will be shifted right the
specified number of places. The sign bit (Bit 17) remains unchanged, but
is propagated into the Bit 16 position on each right shift.

Any bit shifted off the bottom of the register sets the Carry flag but
is otherwise lost. ‘

e.g. SRAAA4; of 1 0110 1100 0110 0101
gives 1 1111 0110 1100 0110 (With Carry flag set)

Shift Left Logical A or B - SLLA or SLLB

Bits 16 to 1 of the specified accumulator will be shifted left the
specified number of places. The sign bit (Bit 17) remains unchanged.

Any bit shifted off the top of the register sets the Carry flag but

is otherwise lost. A zero will be inserted in Bit 1 on each left
Shift. ‘ " &

e.g. SLLBA2; of O 0110 1100 0110 0101
gives O 1011 0001 1001 0100 (With Carry flag set)

Shift Right Logical A or B - SRLA or SRLB

Bits 16 to 1 of the specified accumulator will be shifted right the
specified number of places. The sign bit (Bit 17) remains unchanged.

Any bit shifted off the bottom of the register sets the Carry flag
but is otherwise lost. A zero will be inserted in Bit 16 on each right shift.

e.g. SRLAA3; of O 0110 1100 0110 0101
gives 0 0000 .1101 1000 1100 (With Carry flag set)

202(5.73) 1ss.1

34

Rotate Left Multiple A or B - RLMA or RLMB

Bits 16 to 1 of the specified accumulator will be rotated left the

specified number of places, with the sign bit (Bit 17) remaining unchanged

and the Carry flag being unaffected. Bits 15 to 1 will be left shifted
once on each rotate, with the figure which was in Bit 16 re-entering the
Accumulator at Bit 1. In other words, Bits 1 to 16 of the specified
accumulator are treated as a closed loop, and what is commonly called a
circular shift is performed for each rotate, in that any bit rotated off
the left end will re-appear at the right end.

e.g. RLMAA2; of O 0110 1100 0110 0101
gives 0 1011 0001 .1001 0101

Rotate Right Multiple A or B - RRMA or RRMB

Bits 16 to 1 of the specified accumulator will be rotated right the
specified number of places, with the sign bit (Bit 17) remaining unchanged
and the Carry flag being unaffected. Bits 16 to 2 will be right shifted
once on each rotate, with the figure which was in Bit 1 re-entering the
Accumulator at Bit 16. In other words, Bits 1 to 16 of the specified
accumulator are treated as a closed loop, and what is commonly called a

circular shift is performed for each rotate, in that any bit rotated off the

right end will re-appear at the left end.

e.g. RRMBa3; of O 0110 1100 0110 0101
gives 0O 1010 1101 100G 1100

INPUT/OUTPUT INSTRUCTIONS

These are a set of program instructions which, like the majority of the)

Mode O Register Instructions, are 'Privileged', that is not used in general

programming but only by the system software. There now follows a description of

the Input/Output instructions, which control all transfers of data to and from

the peripherals and also perform various operations within the processor.
They provide the following general capabilities :-

a) Fix the state of the Busy and Done flags

b) Test the state of the Busy and Done flags

c) Enter data from a specified device into the A or B Registers
d) Output data to a specified device from the A or B Registers.

I/0 instructions are recognised by the computer when the four most
significant bits of the instruction word are 0000 and Bit 13 is a 1 (Octal

Code 01). Bits 6 to 1 select the device that is to respond to the instruction;

the format thus allows for 64 codes. In all I/0 instructions Bits 11 to 7.

specify the complete function to be performed, bits 10 and 11 either controlling
or sensing Busy and Done, as shown under 'Funct.' in the Selection Chart (Fig.3:24)

on the next page. If Bits 7 to 9 are all set (Mode 111) there is no transfer,

and Bits 11 and 10 then specify a skip condition. Bit 12, where relevant,
specifies the A or B register (A=1, B=@),

)

202(5.73) 1Iss.1

3:35

Ve
17 16 1514 13 12 1110 9 8 7 6 5 4 3 2 1
.I.I.l.l. ® .l. OIOL. .I.I.I.I.I.
Mnemonics | OP. CODE [%,]FUNCT] MODE | DEVICE CODE
STT |0 O|O O | o1 " |Set Busy. Clear Done
sToP [0 oloo 1| 10 Clear Busy.Clear Done
lop o olo o 1 Lo Input/Output Pulse
O 0|0 O | 00O Allows Functionz above
DIPiA |0 Ol0 O 11 00 | DATI 1A)
-~ DIPIB |0 Of0 0 1 0O | DATI 1B
DIP2A [0 O|lO O {1 ol o DATI 2A
DiIP2B |0 Ol0 O | ol o0 DATI 2B
DIP3A |0 Oj0 O 1|1 o1l 1 DATI 3A| .
DIP3B |0 O[O0 O | o1l DAT! 3B |ysed with
pOP1A |0 Olo o 1|1 I 00 DATO 1A [any of above
porie |0 olo o | | 00 paTO 18 | FUnCtionE
DOP2A |0 O|0 O 1|1 1 O 1 DATO 2A
por2B (0 O0jlo0 O | 1 0| DATO 2B
DOP3A |0 Olo O 1|1 I 10 DATO 3A
poP3B |0 OO0 O I o) DATO 38|
SkB [0 olo 0 1| ool 1 1 Skip if Busy
SKNB [0 o|l0o O 1| o |t 11 Skip if not Busy
SKD |0 0|0 O | L ofr 11 Skip if Done
a SKND [0 o0jlooO 1| 1 1|1 11 Skip if not Done
Fig.3:24
Operation Code
Input/Output instructions are recognised by the computer when Bits 17
to 13 are set to the Octal Code Ol.
/A\

202(5.73) 18s8.1

Accumulator Indicator - Bit 12

Denotes to which accumulator the instruction refers

Accumulator A
Accumulator B

nn
[

Function - Bits 11 and 10

When any Mode except 111 is set, the functions are as follows :-

-
00 = No operation -~
01 = Set Busy, Clear Done (to start the device)
10 = Clear Busy, Clear Done (to idle the device)
11 = Input/Output Pulse (the effect, if any, depends on
the device).
The functions as interpreted when Mode 111 (Skip Mode) is set, are
shown with this Mode.
MODES - Bits 9-7
Mode 000
This has no input/output transfer, but just enables any of the functions
shown previously.
N
Mode 001 - DIPlA or DIP1B
Enables input from Register 1 of the specified device (each peripheral
can have up to three registers or buffers) into Accumulator A or B, as
specified, and can also enable any Function shown previously.
Mode 010 - DIP2A or DIP2B
Enables input from Register 2 of the specified device; used to inspect
Status codes, and can also enable any Function shown previously.
Mode 011 - DIP3A or DIP3B
Enables input from Register 3 of the specified device into Accumulator A
or B, as specified, and can also enable any Function shown previously.

202(5.73) 1ISS.1

” -

3:37

Mode 100 - DOPlA or DOP1B

Enables output to Register 1 of the specified device from Accumulator
A or B, as specified, and can also enable any Function shown previously.

Mode 101 - DOP2A or DOP2B

Enables output to Register 2 of the specified device from Accumulator
A or B, as specified, and can also enable any Function shown previously.

‘Mode 110 - DOP3A or DOP3B

Enables output to Register 3 of the specified device from Accumulator
A or B, as specified, and can also enable any Function shown previously.

Mode 111 - Skip Mode

If this Mode is set there is no input/output transfer and the Function
bits (11 and 10) then specify a skip condition.

Skip if Busy
Skip if Not Busy
Skip if Done
Skip if Not Done

e.g. Function 00
Function 01
Function 10
Function 11

Device Code

There can be 64 different device codes (00-77 in Octal) of which 63
are used to address devices, the code 00 not being used. A table in
Figure 3:25 on the next page lists all devices for which codes have been
assigned. The addresses have been grouped into fixed blocks to cover all
machine variations, to prevent inadvertent misdirection of data between
devices in test programs or board changing. Devices must all carry serjgl
numbers on program descriptions and listing, and all programmers must
notify the Factory in writing as soon as possible which devices have which
codes, and also the order of priorities as required.

Alpha/Numeric Displays have their own addresses, ranging normally
from 60 to 67. When required, they are paired with Keyboards as
follows :-

Keyboard 20 with A/N Display 60
Keyboard 21 with A/N Display 61

N etc.

202(5.73) Iss.1

3:381= I1/0 DEVICE ADDRESSES
00 Not Used ‘Huo | Serialiser (Modem)TX 1
1 Cathode Ray Display -~
01 Front Feed 4l " " " 2
: Mag. Stripe Reader 1
02 Rear Feed 42 " " " 3
03 Front Feed 43 " n " 4
| Mag. Stripe Reader 2 ¢
oy . Rear Féed s Ly " " " 5
05| - Front Feed 45 \ " " " 6
1 Mag. Stripe Reader 3
06 Rear Feed L6 " " " 7
07‘ Spare u7 " U] " 8
10 PE Reader 2 or Mark Senser 1 50 Serialiser (Modem)RX 1
Cathode Ray Keyboard
11| PE Reader 1 or Mark Senser 2 51 " " " 2
12 Mark Senser 3 52 " " " 3 an
13 Mark Senser 4 53 " " " 4
14 Single Shot/Hopper Reader(80 col)jor| " 5 54 " " " 5
ls " 1] ” " e.p. c. or ”" 6 55 " 11 (1] 6
16 " . [1] 11 (1] ” or " 7 56 " n " 7
17 1) " 11] ”" ” or " 8 57 " " " 8
20 Alpha-Numeric K/B 1{ 10 Key K/B 1 60 | I/O Writer 4 I/P| A/N Display
: or
21 " " " 2 " 2 61 " 4 0/P| Tally Roll
Printers
22 n " " 3 n 3 62 " 3 I/P "
23) L] 11] n 4 " 4 63 7" 3 o/P " ‘
2'+ " n " 5 " 5 64 1] 2 I/P 11 |
25 11 1 1" 6 [1] 6 65 n 2 O/P ”
26 11 " 11 7 " 7 66 1" 1 I/P ”
27 " 1] " 8 [}] 8 67 " 1 O/P n
30 Line Printer 1 70 | Disc 1
31 Line Printer 2 71 | Disc 2
32 Tape Punch 2 72 Spare
33 Tape Punch 1 73 Spare .
34 High Speed Serial Printer (Dot) 1 74 | Mag Tape Handler 1]
35 High Speed Serial Printer (Dot) 2 75| Mag Tape Handler 2 <
36 Spare 76 | Drum/Disc (Fast Access) 1 \2
)
37 Spare-- 771 Drum/Disc (Fast Access) 2 o

Fig. 3:25
1

3:39

Input/OQutput (continued)

Every peripheral device has up.to three buffer registers, an
Interrupt Disable Flag, Busy and Done Flags and a 6-bit device selection

network.

Instruction
the correct
in-out bus.
the device.
sequence of

This selection network decodes Bits 1-6 of the Input/Output

(which contain the device address), thus ensuring that only
device responds to signals sent by the processor over the
The Busy and Done Flags together denote the basic state of
When both are clear, the device is idle. The overall
Busy and Done states is determined by both the program and the

internal operation of the device :-

Done

Busy
(0] o)
START /!
| o CLEAR
DEVICE) START
COMPLETION o | AGAIN

The Data-in or data-out instruction that the program gives in
response to the setting of Done can also restart the device. When all
data has been transferred, the program generally clears Donme so that the
device neither requests further interrupts nor appears to be in use.
(Busy and Done both set is a meaningless situation).

Any device whose Interrupt Disable flag is set, cannot cause an
interrupt to start and is therefore regarded by the program as being of
low priority. The Interrupt Disable flags are used in setting up a
priority structure which enables higher priority devices to interrupt an
interrupt already in progress. This priority is determined by the use of
a mask which controls the states of the Interrupt Disable flags in the
different devices (as previously described under Mask Out, see Page 3:19).

202(5.73) 18Ss.1

3:40

Each peripheral device can have up to three buffer registers, as
explained on previous page.

Status Codes of all devices except .disc.

DATI 2 Input (DIP 2A or DIP 2B) inspects the
Status codes are codes allocated to

-~

indicate conditions of the device being addressed, and appear in Bits 8 - 1 as

shown below, reading from left to right in descending order.

Parity false

condition is reset by the Input/Output Pulse in all cases except the Trend

Reader.
STATUS CODES
Device Status Code
Card Reader No Card 00000001
Card Reader Parity 0dd 00001000
Displays Power Monitor 00000001
Fast Serial Printer Power Monitor 00000001
IBM (see note below) Parity Fail 10000000
Keyboards Parity Error 00000010
Keyboards Finger Trouble 00000100
Line Printer Off Line 00000001
Line Printer Buffer not Ready 00000010
Line Printer Print cycle in progress 00000100
Line Printer Paper feeding 00001000
Line Printer Data Channel Mode 00010000
Mag. Stripe Card Handler Last Line 00000001
Mag. Stripe Card Handler Card jammed 00000010
Mag. Stripe Card Handler Parity fail (Read omnly) 00000100
Mag. Stripe Card Handler Data late (read or write) 00001000
Mag. Stripe Card Handler Card not in Hopper 00010000
Modems Do not transmit 00000001
Modems Do not transmit or receive 00000010
Modems Data link not connected 00000100
Modems Parity 0dd 00001000
Modems Receiver Idling 00010000
Paper Tape Reader Latch Open 00000001
Paper Tape Reader No Tape 00000010
Paper Tape Reader Parity 0dd 00001000
Punch Card position 00000001
Punch Out of Tape 00000100
Punch Check-back-failure 00000010
Single Shot No Card 00000001
Single Shot Parity 0dd 00001000
Tally Roll Printer Power Monitor 00000001
VDU Parity Error 00001000

)

Note :- Any parity failure on Input or Output will be detected and shown as a

status failure in the Status Register of the IBM Input only.

. The Status Codes referring to 'No Tape' in the Trend Reader and 'Out
of Tape' in the Punch will be available only when decided by the Technical
"design/development/production departments. Please refer to Pre-production
Engineers for news of latest positions on these Status Codes.

For Disc Status Codes, please see Page 4:37.

202(5.73)

I8S.1

